On the low-frequency unsteadiness in shock wave–turbulent boundary layer interactions
نویسندگان
چکیده
The shock wave–turbulent boundary layer interaction over a compression corner is studied using global stability analysis (GSA) and resolvent based on separation of scales between the low-frequency, large-scale motions turbulent fluctuations. GSA identifies leading stationary mode, which becomes globally unstable as ramp angle beyond critical value. For stable flows, captures two-dimensional three-dimensional local maxima in optimal gain, both are due to modal resonance forcing mode. Notably, frequency-premultiplied gain associated with disturbances peaks at low frequency. different strengths, peak frequencies collapse onto universal value 0.015 when non-dimensionalized length region free-stream velocity. A numerical simulation perturbed corresponding reveals that response form back-and-forth motion.
منابع مشابه
Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction
Stephan Priebe and M. Pino Martín Journal of Fluid Mechanics / Volume 699 / May 2012, pp 1 49 DOI: 10.1017/jfm.2011.560, Published online: Link to this article: http://journals.cambridge.org/abstract_S002211201100560X How to cite this article: Stephan Priebe and M. Pino Martín (2012). Lowfrequency unsteadiness in shock wave–turbulent boundary layer interaction. Journal of Fluid Mechanics, 69...
متن کاملModeling the Effect of Shock Unsteadiness in Shock/ Turbulent Boundary-Layer Interactions
Reynolds-averaged Navier–Stokes (RANS) methods often cannot predict shock/turbulence interaction correctly. This may be because RANS models do not account for the unsteady motion of the shock wave that is inherent in these interactions. Previous work proposed a shock-unsteadiness correction that significantly improves prediction of turbulent kinetic energy amplification across a normal shock in...
متن کاملModeling the effect of shock unsteadiness in shock-wave/ turbulent boundary layer interactions
Reynolds averaged Navier-Stokes methods often cannot predict shock/turbulence interaction correctly. This may be because RANS models do not account for the unsteady motion of the shock wave that is inherent in these interactions. Sinha et al. [Phys. Fluids, Vol. 15, No. 8 (2003)] propose a shock-unsteadiness correction that significantly improves turbulence prediction across a normal shock in a...
متن کاملA Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
متن کاملNumerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow
Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2023
ISSN: ['0022-1120', '1469-7645']
DOI: https://doi.org/10.1017/jfm.2023.687